Abstract
AbstractSelf-organizing manufacturing network has emerged as a viable solution for adaptive manufacturing control within the mass personalization paradigm. This approach involves three critical elements: system modeling and control architecture, interoperable communication, and adaptive manufacturing control. However, current research often separates interoperable communication from adaptive manufacturing control as isolated areas of study. To address this gap, this paper introduces Knowledge Graph-enhanced Multi-Agent Reinforcement Learning (MARL) method that integrates interoperable communication via Knowledge Graphs with adaptive manufacturing control through Reinforcement Learning. We hypothesize that implicit domain knowledge obtained from historical production job allocation records can guide each agent to learn more effective scheduling policies with accelerated learning rates. This is based on the premise that machine assignment preferences effectively could reduce the Reinforcement Learning search space. Specifically, we redesign machine agents with new observation, action, reward, and cooperation mechanisms considering the preference of machines, building upon our previous MARL base model. The scheduling policies are trained under extensive simulation experiments that consider manufacturing requirements. During the training process, our approach demonstrates improved training speed compared with individual Reinforcement Learning methods under the same training hyperparameters. The obtained scheduling policies generated by our Knowledge Graph-enhanced MARL also outperform both individual Reinforcement Learning methods and heuristic rules under dynamic manufacturing settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.