Abstract
Knowledge graph embedding (KGE) aims to project both entities and relations into a continuous low-dimensional space. However, for a given knowledge graph (KG), only a small number of entities and relations occur many times, while the vast majority of entities and relations occur less frequently. This data sparsity problem has largely been ignored by most of the existing KGE models. To this end, in this paper, we propose a general technique to enable knowledge transfer among semantically similar entities or relations. Specifically, we define latent semantic units (LSUs), which are the sub-components of entity and relation embeddings. Semantically similar entities or relations are supposed to share the same LSUs, and thus knowledge can be transferred among entities or relations. Finally, extensive experiments show that the proposed technique is able to enhance existing KGE models and can provide better representations of KGs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.