Abstract
Knowledge graph completion is an important research issue in knowledge graph construction, knowledge engineering, and natural language processing. A knowledge graph is a knowledge support for realizing accurate knowledge services in general and professional fields. It is also an important breakthrough foundation in information retrieval, question-and-answer interactions, and information recommendation. The low quality and small scale of the knowledge graph are the main bottlenecks that hinder its wide applications. The purpose of knowledge graph completion is to build a large-scale and high-quality knowledge graph for continuously updating and expanding the knowledge graph. Aiming at the difficulty of knowledge graph completion methods to extract deep semantic features from auxiliary information, such as unstructured texts, this study proposes a knowledge graph completion method based on parsing graph embedding and weighted graph convolutional network. This method uses the weighted graph convolutional network to model the semantic dependency parsing of the entity description and construct the semantic dependency parsing graph embedding. Furthermore, it introduces a multi-grained sentence-embedding generation method of the entity description, which is intended to build entity representation learning that can capture multi-grained semantics and deep-level semantic features. The experimental results on two public datasets show that the proposed knowledge graph completion approach outperforms the existing methods, thereby demonstrating its effectiveness and superiority.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.