Abstract

Applications of process systems engineering (PSE) in plants and enterprises are boosting industrial reform from automation to digitization and intelligence. For ethylene thermal cracking, knowledge expression, numerical modeling and intelligent optimization are key steps for intelligent manufacturing. This paper provides an overview of progress and contributions to the PSE-aided production of thermal cracking; introduces the frameworks, methods and algorithms that have been proposed over the past 10 years and discusses the advantages, limitations and applications in industrial practice. An entire set of molecular-level modeling approaches from feedstocks to products, including feedstock molecular reconstruction, reaction-network auto-generation and cracking unit simulation are described. Multi-level control and optimization methods are exhibited, including at the operational, cycle, plant and enterprise level. Relevant software packages are introduced. Finally, an outlook in terms of future directions is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.