Abstract
The structural network control principle for identifying personalized drug targets (SNCPDTs) is a kind of constrained multiobjective optimization (CMO) problem with NP-hard features, which makes traditional mathematical methods difficult to adopt. Therefore, this study designs a knowledge-embedded multitasking constrained multiobjective evolutionary algorithm (KMCEA) to solve the SNCPDTs by mining relevant knowledge. Specifically, the relationships between two optimization objectives (minimizing the number of driver nodes and maximizing prior-known drug-target information) and constraints (guaranteeing network control) are analyzed from the perspective of CMO. We find that two objectives are difficult to optimize; thus two single-objective auxiliary tasks are created to optimize two objectives respectively, so as to maintain diversity along the Pareto front. Furthermore, we find that two optimization objectives have a complex reverse relation and a simple positive relation with constraints, respectively; thus, a population initialization method and a local auxiliary task are designed for two single-objective auxiliary tasks, respectively, so as to improve the performance of the algorithm on two objective functions. Finally, KMCEA is used to solve two kinds of models with three kinds of datasets. Compared with various methods, KMCEA can not only effectively discover clinical combinatorial drugs but also better solve the SNCPDTs regarding convergence and diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.