Abstract

Rapid advances in new generation information technologies, such as big data analytics, internet of things (IoT), edge computing and artificial intelligence, have nowadays driven traditional manufacturing all the way to intelligent manufacturing. Intelligent manufacturing is characterised by autonomy and self-optimisation, which proposes new demands such as learning and cognitive capacities for manufacturing cell, known as the minimum implementation unit for intelligent manufacturing. Consequently, this paper proposes a general framework for knowledge-driven digital twin manufacturing cell (KDTMC) towards intelligent manufacturing, which could support autonomous manufacturing by an intelligent perceiving, simulating, understanding, predicting, optimising and controlling strategy. Three key enabling technologies including digital twin model, dynamic knowledge bases and knowledge-based intelligent skills for supporting the above strategy are analysed, which equip KDTMC with the capacities of self-thinking, self-decision-making, self-execution and self-improving. The implementing methods of KDTMC are also introduced by a thus constructed test bed. Three application examples about intelligent process planning, intelligent production scheduling and production process analysis and dynamic regulation demonstrate the feasibility of KDTMC, which provides a practical insight into the intelligent manufacturing paradigm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.