Abstract
Deep learning architectures have shown remarkable results in scene understanding problems, however they exhibit a critical drop of performances when they are required to learn incrementally new tasks without forgetting old ones. This catastrophic forgetting phenomenon impacts on the deployment of artificial intelligence in real world scenarios where systems need to learn new and different representations over time. Current approaches for incremental learning deal only with image classification and object detection tasks, while in this work we formally introduce incremental learning for semantic segmentation. We tackle the problem applying various knowledge distillation techniques on the previous model. In this way, we retain the information about learned classes, whilst updating the current model to learn the new ones. We developed four main methodologies of knowledge distillation working on both output layers and internal feature representations. We do not store any image belonging to previous training stages and only the last model is used to preserve high accuracy on previously learned classes. Extensive experimental results on the Pascal VOC2012 and MSRC-v2 datasets show the effectiveness of the proposed approaches in several incremental learning scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.