Abstract

This paper presents an approach for performing knowledge discovery in texts through qualitative and quantitative analyses of high‐level textual characteristics. Instead of applying mining techniques on attribute values, terms or keywords extracted from texts, the discovery process works over conceptss identified in texts. Concepts represent real world events and objects, and they help the user to understand ideas, trends, thoughts, opinions and intentions present in texts. The approach combines a quasi‐automatic categorisation task (for qualitative analysis) with a mining process (for quantitative analysis). The goal is to find new and useful knowledge inside a textual collection through the use of mining techniques applied over concepts (representing text content). In this paper, an application of the approach to medical records of a psychiatric hospital is presented. The approach helps physicians to extract knowledge about patients and diseases. This knowledge may be used for epidemiological studies, for training professionals and it may be also used to support physicians to diagnose and evaluate diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.