Abstract

Knowledge computation tasks, such as computing a base of valid implications, are often infeasible for large data sets. This is in particular true when deriving canonical bases in formal concept analysis (FCA). Therefore, it is necessary to find techniques that on the one hand reduce the data set size, but on the other hand preserve enough structure to extract useful knowledge. Many successful methods are based on random processes to reduce the size of the investigated data set. This, however, makes them hardly interpretable with respect to the discovered knowledge. Other approaches restrict themselves to highly supported subsets and omit rare and (maybe) interesting patterns. An essentially different approach is used in network science, called k-cores. These cores are able to reflect rare patterns, as long as they are well connected within the data set. In this work, we study k-cores in the realm of FCA by exploiting the natural correspondence of bi-partite graphs and formal contexts. This structurally motivated approach leads to a comprehensible extraction of knowledge cores from large formal contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.