Abstract

Open-ended Video question answering (open-ended VideoQA) aims to understand video content and question semantics to generate the correct answers. Most of the best performing models define the problem as a discriminative task of multi-label classification. In real-world scenarios, however, it is difficult to define a candidate set that includes all possible answers. In this paper, we propose a Knowledge-constrained Generative VideoQA Algorithm (KcGA) with an encoder-decoder pipeline, which enables out-of-domain answer generation through an adaptive external knowledge module and a multi-stream information control mechanism. We use ClipBERT to extract the video-question features, extract framewise object-level external knowledge from a commonsense knowledge base and compute the contextual-aware episode memory units via an attention based GRU to form the external knowledge features, and exploit multi-stream information control mechanism to fuse video-question and external knowledge features such that the semantic complementation and alignment are well achieved. We evaluate our model on two open-ended benchmark datasets to demonstrate that we can effectively and robustly generate high-quality answers without restrictions of training data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.