Abstract

Artificial intelligence programs operating in competitive domains typically use brute-force search if the domain can be modeled using a search tree or alternately use nonsearch heuristics as in production rule-based expert systems. While brute-force techniques have recently proven to be a viable method for modeling domains with smaller search spaces, such as checkers and chess, the same techniques cannot succeed in more complex domains, such as shogi or go. This research uses a cognitive-based modeling strategy to develop a heuristic search technique based on cognitive thought processes with minimal domain specific knowledge. The cognitive-based search technique provides a significant reduction in search space complexity and, furthermore, enables the search paradigms to be extended to domains that are not typically thought of as search domains such as aerial combat or corporate takeovers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.