Abstract

In this article, an artificial neural network (ANN) is developed in order to predict the per-unit-length (p. u. l.) parameters of hybrid copper-graphene on-chip interconnects from a prior knowledge of their structural geometry and layout. The salient feature of the proposed ANN is that it combines knowledge of the p. u. l. parameters extracted from empirical models along with that extracted from a rigorous full-wave electromagnetic solver. As a result, the proposed ANN is referred to as a knowledge-based neural network (KBNN). The KBNN has been found to converge to the same accuracy as a conventional ANN but at the expense of far smaller training time costs. As a result, the KBNN is much more suitable for performing design space explorations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call