Abstract

Landslides are common geological hazard occurring in the mountainous region. The Himalayan belt is prone to landslide disasters, which is directly linked to the prosperity and development of the area. The present study was carried out around the Chamoli-Joshimath area, which is situated in the Northernmost-belt of the Garhwal Himalaya, India. A strategic road connecting Tibet which also links the famous Hindu temples Badrinath and Kedarnath traverses the area. The main purposes of the present study is to delineate the landslide susceptible zones in the area so that it could be helpful towards landslide disaster risk reduction and to highlight the applicability of knowledge based susceptibility mapping method in the Himalayas. The area comprises low-to-high grade metamorphic rocks as well as carbonate rocks such as limestone and dolomite. In the study area, most of the landslides occur along the road and river sections, and in the thrust or fault zones. The landslide zones are strongly controlled by the Main Central Thrust and other faults and the resulting geomorphic condition. Most of the unstable slopes are prone to plane and wedge failures. There are many active and dormant landslides (covered by vegetation) in the area. The active landslides are due to reactivation of pre-existing ones. The predicted landslide susceptible zones are in good agreement with the historical landslide locations, which is good indication that knowledge based landslide susceptibility mapping can be successfully applied in the Himalayas provided the causative factors are thoroughly understood.

Highlights

  • Landslides are common geological hazard occurring in the mountainous region

  • Himalaya is extremely vulnerable to natural disasters due to its geology, steep slopes, high relief and monsoon climates

  • The active tectonics in the Himalaya is responsible for the generation of faults, crushed zones, and several sets of joints that make the rocks weak, resulting in steep hill slopes susceptible to sliding (e.g. Dadson et al 2004; Kirby and Whipple 2012; Chen et al 2015a, 2015b)

Read more

Summary

Results

The area comprises low-to-high grade metamorphic rocks as well as carbonate rocks such as limestone and dolomite. Most of the landslides occur along the road and river sections, and in the thrust or fault zones. The landslide zones are strongly controlled by the Main Central Thrust and other faults and the resulting geomorphic condition. Most of the unstable slopes are prone to plane and wedge failures. There are many active and dormant landslides (covered by vegetation) in the area. The active landslides are due to reactivation of pre-existing ones

Conclusions
Background
Methods
Results and discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.