Abstract

In this paper we present a knowledge-based femur detection algorithm. The algorithm uses femur corpus constraints, Canny edge detection and Hough lines. For optimal femur template placement in the local area we use cross-correlation. The segmentation itself is done with an optimized active shape modeling technique. Using the knowledge-based technique we have located 95% of the femur shapes of N = 117 X-rays. From those 83% of the target femur shapes have been segmented successfully (point-to-point error: ∼ 14 pixels, point-to-boundary error = ∼ 9 pixels).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.