Abstract
Global object redundancy (GOR), as opposed to local spatial/temporal redundancies in a single video clip, is a new form of redundancy common in multisource surveillance video data (MSVD). GOR is induced by the repetition of foreground objects across multiple cameras, and becomes influential as the number of objects increases. Eliminating GOR considerably improves MSVD coding efficiency. In an effort to accomplish this, this study first proposes a knowledge-based representation of objects based on careful analysis of GOR composition. The representation contains a constant part and a variational part: the former is used to represent the common knowledge shared by an object across multiple cameras, while the latter is used to represent local variations on the object's surfaces. Based on the proposed representation, a knowledge-based coding (KBC) method is then proposed in which each foreground object is encoded with a hybrid prediction scheme, where the constant part of the object is generated via global prediction from a model library and the variational part is predicted via local reference frames with pose-based, short-term prediction. Experimental results showed that the KBC method saves more than 39% bits on average for encoding foreground objects in high-resolution video clips (compared to 16% for the entire videos). Applying the proposed coding method to surveillance videos in large spatial and temporal scale allows storage savings at the PB level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.