Abstract

Biomedical word sense disambiguation (WSD) is an important intermediate task in many natural language processing applications such as named entity recognition, syntactic parsing, and relation extraction. In this paper, we employ knowledge-based approaches that also exploit recent advances in neural word/concept embeddings to improve over the state-of-the-art in biomedical WSD using the public MSH WSD dataset [1] as the test set. Our methods involve weak supervision - we do not use any hand-labeled examples for WSD to build our prediction models; however, we employ an existing concept mapping program, MetaMap, to obtain our concept vectors. Over the MSH WSD dataset, our linear time (in terms of numbers of senses and words in the test instance) method achieves an accuracy of 92.24% which is a 3% improvement over the best known results [2] obtained via unsupervised means. A more expensive approach that we developed relies on a nearest neighbor framework and achieves accuracy of 94.34%, essentially cutting the error rate in half. Employing dense vector representations learned from unlabeled free text has been shown to benefit many language processing tasks recently and our efforts show that biomedical WSD is no exception to this trend. For a complex and rapidly evolving domain such as biomedicine, building labeled datasets for larger sets of ambiguous terms may be impractical. Here, we show that weak supervision that leverages recent advances in representation learning can rival supervised approaches in biomedical WSD. However, external knowledge bases (here sense inventories) play a key role in the improvements achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.