Abstract

Virtual prototyping (VP) of complex machines requires the realistic representation of components to perform robust analyses and simulations. In many cases, machines are an assembly of rigid and flexible components. Although modern three-dimensional CAD systems can be considered powerful tools for modelling solids or surfaces representing rigid bodies, they are not adequate to model soft material components, especially a realistic visualisation of physical behaviour. This drawback motivated the present research work. In particular, this paper describes an approach and the related knowledge-based software system (FlexSim) developed to create virtual prototypes facilitating product development in cases of flexible parts like cables, pipes and wires. The resulting VP tool integrates the CAD technology and the dedicated structural simulation methods to automatically model and validate three-dimensional functional sub-groups having flexible parts. The system application is shown on metallic reinforced elastomer hoses used for hydraulic power transmissions. For this purpose, a finite-element approach has been implemented to find hose configurations for given boundary conditions determined by mounting positions. Pipe fittings are selected and automatically assembled and the optimal hose length and its ideal spatial disposition are calculated. Simulations of behaviour allow the rapid optimisation of a solution. The system has been tested on agricultural harvest machines and mining equipment, which widely employ hydraulic transmissions for moving groups of components. As a result, the number of physical prototypes, the lead-time due to the trial-and-error activities and the product development costs can be significantly reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.