Abstract
Knowledge graphs have been introduced into recommender systems due to the rich connectivity information. Many knowledge-aware recommendation methods use graph neural networks (GNNs) to capture the high-order structural and semantic information of knowledge graphs. However, previous GNN-based methods have the following limitations: (1) they fail to make full use of the neighborhood information of entities and (2) they ignore the importance of user interaction sequences on reflecting user preferences. As such, these models are insufficient for generating accurate representations of users and items. In this study, we propose a Knowledge-aware Hierarchical Attention Network (KHAN) to provide better recommendation. Specifically, the proposed model mainly consists of an item encoder and a user encoder. The item encoder is equipped with a hierarchical attention network, which is used to generate entity (item) representations by carefully aggregating neighborhood information of entities. The user encoder is also designed to learn more informative user representations from user interaction sequences using multi-head self-attention. The learned user representations are then combined with user representations introduced in the item encoder through a gating mechanism to generate the final user representations. Extensive experiments on two real-world datasets about movie and restaurant recommendation demonstrate the effectiveness of our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.