Abstract
The primary goal of this paper is to present a new approximation theory. In classical rough sets, topological concepts, closure, and interior are expressible by elementary sets; hence, they are the elementary knowledge approximations. However, for general binary relations, the corresponding closure and interior cannot always be interpreted by elementary knowledge. The primary results of this paper are to show that the appropriate generalized closure and interior are central knowledge approximations and have many expected nice properties, such as the upper approximation contains lower approximations. Here the central knowledge approximations mean the approximations are expressible by centers sets and the center set denotes the set of points that regard a binary neighborhood of the point p (which is the set of points that are (right) related to p) as its neighborhood. Many examples are used to justify our new view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.