Abstract
Semantic matching is a basic problem in natural language processing, but it is far from solved because of the differences between the pairs for matching. In question answering (QA), answer selection (AS) is a popular semantic matching task, usually reformulated as a paraphrase identification (PI) problem. However, QA is different from PI because the question and the answer are not synonymous sentences and not strictly comparable. In this work, a novel knowledge and cross-pair pattern guided semantic matching system (KCG) is proposed, which considers both knowledge and pattern conditions for QA. We apply explicit cross-pair matching based on Graph Convolutional Network (GCN) to help KCG recognize general domain-independent Q-to-A patterns better. And with the incorporation of domain-specific information from knowledge bases (KB), KCG is able to capture and explore various relations within Q-A pairs. Experiments show that KCG is robust against the diversity of Q-A pairs and outperforms the state-of-the-art systems on different answer selection tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.