Abstract
suitable membership function (MF) is the core step of fuzzy classification system. This paper presents a novel learning algorithm that generates automatically reasonable MFs for quantitative attributes. In addition, a set of an appropriate fuzzy classification rules (FCRs) are discovered from a given numerical data. Each fuzzy rule (FR) is of the form IF-THEN rule. The antecedent IF-part and consequent THEN-part contain fuzzy sets. Since MFs are generated automatically, the proposed fuzzy learning algorithm can be viewed as a knowledge acquisition tool for classification problems. Experimental results on Iris dataset are presented to demonstrate the contribution of the proposed approach for generating MFs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.