Abstract
Abstract: Machine learning can extract desired knowledge from training examples and ease the development bottleneck in building expert systems. Most learning approaches derive rules from complete and incomplete data sets. If attribute values are known as possibility distributions on the domain of the attributes, the system is called an incomplete fuzzy information system. Learning from incomplete fuzzy data sets is usually more difficult than learning from complete data sets and incomplete data sets. In this paper, we deal with the problem of producing a set of certain and possible rules from incomplete fuzzy data sets based on rough sets. The notions of lower and upper generalized fuzzy rough approximations are introduced. By using the fuzzy rough upper approximation operator, we transform each fuzzy subset of the domain of every attribute in an incomplete fuzzy information system into a fuzzy subset of the universe, from which fuzzy similarity neighbourhoods of objects in the system are derived. The fuzzy lower and upper approximations for any subset of the universe are then calculated and the knowledge hidden in the information system is unravelled and expressed in the form of decision rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.