Abstract

Successful embryogenesis requires proper sorting and compartmentalization of different cell types. Mechanical interactions between cells help govern these processes. In the past, physics-based theories have guided in vitro studies of cell sorting and tissue surface tension. Recent experiments have challenged this approach, indicating that adhesive molecules also act as signaling molecules that initiate local reorganization of actomyosin and demonstrating that cells at the boundary of a colony of initially identical cells become "mechanically polarized." Extending physical models to account for mechanical polarization helps solve a long-standing paradox about magnitudes of tissue surface tensions and potentially explains discrepancies between recent in vivo and in vitro cell-sorting experiments. New experiments are needed to further explore the connection between mechanical polarization and tissue boundary formation in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.