Abstract
The knotting probability of an arc diagram is defined as the quadruplet of four kinds of finner knotting probabilities which are invariant under a reasonable deformation containing an isomorphism on an arc diagram. In a separated paper, it is shown that every oriented spatial arc admits four kinds of unique arc diagrams up to isomorphisms determined from the spatial arc and the projection, so that the knotting probability of a spatial arc is defined. The definition of the knotting probability of an arc diagram uses the fact that every arc diagram induces a unique chord diagram representing a ribbon 2-knot. Then the knotting probability of an arc diagram is set to measure how many nontrivial ribbon genus 2 surface-knots occur from the chord diagram induced from the arc diagram. The conditions for an arc diagram with the knotting probability 0 and for an arc diagram with the knotting probability 1 are given together with some other properties and some examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.