Abstract
The lattice stick number of a knot type is defined to be the minimal number of straight line segments required to construct a polygon presentation of the knot type in the cubic lattice. In this paper, we mathematically prove that the trefoil knot 31 and in figure 8 knot 41 are the only knot types of lattice stick number less than 15, which verifies the result from previous numerical estimations on this quantity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.