Abstract

The signed graphs of tangles or of tunnel links (special links in {R3-two parallel lines}) are two terminal signed networks. The latter contain the two terminal passive electrical networks. The conductance across two terminals of a network is defined, generalizing the classical electrical notion. For a signed graph, the conductance is an ambient isotopy invariant of the corresponding tangle or tunnel link. Series, parallel, and star triangle methods from electrical networks yield techniques for computing conductance, as well as giving the first natural interpretation of the graphical Reidemeister moves. The conductance is sensitive to detecting mirror images and linking. The continued fraction of a rational tangle is a conductance. Algebraic tangles correspond to two terminal series parallel networks. For tangles, the conductance can be computed from a special evaluation of quotients of Conway polynomials and there is a similar evaluation using the original Jones polynomial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.