Abstract
Accurately predicting the pairing order of bases in RNA molecules is essential for anticipating RNA secondary structures. Consequently, this task holds significant importance in unveiling previously unknown biological processes. The urgent need to comprehend RNA structures has been accentuated by the unprecedented impact of the widespread COVID-19 pandemic. This paper presents a framework, Knotify_V2.0, which makes use of syntactic pattern recognition techniques in order to predict RNA structures, with a specific emphasis on tackling the demanding task of predicting H-type pseudoknots that encompass bulges and hairpins. By leveraging the expressive capabilities of a Context-Free Grammar (CFG), the suggested framework integrates the inherent benefits of CFG and makes use of minimum free energy and maximum base pairing criteria. This integration enables the effective management of this inherently ambiguous task. The main contribution of Knotify_V2.0 compared to earlier versions lies in its capacity to identify additional motifs like bulges and hairpins within the internal loops of the pseudoknot. Notably, the proposed methodology, Knotify_V2.0, demonstrates superior accuracy in predicting core stems compared to state-of-the-art frameworks. Knotify_V2.0 exhibited exceptional performance by accurately identifying both core base pairing that form the ground truth pseudoknot in 70% of the examined sequences. Furthermore, Knotify_V2.0 narrowed the performance gap with Knotty, which had demonstrated better performance than Knotify and even surpassed it in Recall and F1-score metrics. Knotify_V2.0 achieved a higher count of true positives (tp) and a significantly lower count of false negatives (fn) compared to Knotify, highlighting improvements in Prediction and Recall metrics, respectively. Consequently, Knotify_V2.0 achieved a higher F1-score than any other platform. The source code and comprehensive implementation details of Knotify_V2.0 are publicly available on GitHub.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.