Abstract

We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call