Abstract

In the last few hundred years, mathematicians have been attempting to describe the topological and algebraic properties of mathematical knots. Regarding the study of knots, there exists a disconnect between examining a knot’s mathematical and physical definitions. This is due to the inherent difference in the topology of an open-ended physical knot and a closed mathematical knot. By closing the ends of a physical knot, this paper presents a method to break this discontinuity by establishing a clear relation between physical and mathematical knots. By joining the ends and applying Reidemeister moves, this paper will calculate the equivalent mathematical prime or composite knots for several commonly used physical knots. In the future, it will be possible to study the physical properties of these knots and their potential to expand the field of mathematical knot theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.