Abstract
ObjectiveIncreased signal transducer and activator of transcription 3 (STAT3) signaling has been implicated in the development of skeletal muscle insulin resistance, though its contribution, in vivo, remains to be fully defined. Therefore, the aim of this study was to determine whether knockout of skeletal muscle STAT3 would prevent high-fat diet (HFD)-induced insulin resistance.MethodsWe used Cre-LoxP methodology to generate mice with muscle-specific knockout (KO) of STAT3 (mKO). Beginning at 10 weeks of age, mKO mice and their wildtype/floxed (WT) littermates either continued consuming a low fat, control diet (CON; 10% of calories from fat) or were switched to a HFD (60% of calories from fat) for 20 days. We measured body composition, energy expenditure, oral glucose tolerance and in vivo insulin action using hyperinsulinemic-euglycemic clamps. We also measured insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake technique.ResultsSTAT3 protein expression was reduced ∼75–100% in muscle from mKO vs. WT mice. Fat mass and body fat percentage did not differ between WT and mKO mice on CON and were increased equally by HFD. There were also no genotype differences in energy expenditure or whole-body fat oxidation. As determined, in vivo (hyperinsulinemic-euglycemic clamps) and ex vivo (2DOG uptake), skeletal muscle insulin sensitivity did not differ between CON-fed mice, and was impaired similarly by HFD.ConclusionsThese results demonstrate that STAT3 activation does not underlie the development of HFD-induced skeletal muscle insulin resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.