Abstract

We have studied collisions between tetraphenylporphyrin cations and He or Ne at center-of-mass energies in the range 50-110 eV. The experimental results were interpreted in view of density functional theory calculations of dissociation energies and classical molecular dynamics simulations of how the molecules respond to the He/Ne impact. We demonstrate that prompt atom knockout strongly contributes to the total destruction cross sections. Such impulse driven processes typically yield highly reactive fragments and are expected to be important for collisions with any molecular system in this collision energy range, but have earlier been very difficult to isolate for biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.