Abstract
The central nervous system (CNS) is among the most important organ systems, integrating information inputs and coordinating the activity of all other body systems. Like many organ systems, the CNS is susceptible to infection by pathogenic microorganisms, including many arboviruses that are considered neurotropic because they are able to achieve robust replication in neural cells. Neurotropic arboviruses capable of infecting the CNS include members of the Flaviviridae (e.g., West Nile and Japanese encephalitis viruses), Bunyaviridae (La Cross and Rift Valley Fever viruses), and Togaviridae (Alphavirus species) families, all RNA viruses that are maintained in complex life cycles involving a nonhuman primary vertebrate and a primary arthropod vector [1]. A variety of mechanisms exist to protect the CNS from the entry and infection of neurotropic viruses, including innate immune responses and multilayer barriers formed by diverse host cell types [2]. However, many arboviruses gain access to the CNS either as free virions, within motile infected cells, and/or by using axonal transport mechanisms of peripheral nerves that directly enter or form synapses within the CNS. Viruses that enter via the bloodstream must cross CNS endothelial barriers that exhibit unique specializations, collectively termed the blood-brain barrier (BBB).
Highlights
The central nervous system (CNS) is among the most important organ systems, integrating information inputs and coordinating the activity of all other body systems
Neurotropic arboviruses capable of infecting the CNS include members of the Flaviviridae (e.g., West Nile and Japanese encephalitis viruses), Bunyaviridae (La Cross and Rift Valley Fever viruses), and Togaviridae (Alphavirus species) families, all RNA viruses that are maintained in complex life cycles involving a nonhuman primary vertebrate and a primary arthropod vector [1]
It is formed by highly specialized brain microvascular endothelial cells (BMECs) joined by tight (TJ) and adherens junctions (AJ) with associated pericytes and enveloped by astrocytic endfeet [5]
Summary
Citation: Daniels BP, Klein RS (2015) Knocking on Closed Doors: Host Interferons Dynamically Regulate Blood-Brain Barrier Function during Viral Infections of the Central Nervous System. PLoS Pathog 11(9): e1005096. doi:10.1371/journal.ppat.1005096 Funding: This work was supported by NIH/NINDS R01 NS052632, P01 NS059560, NIH/NIAID U19 AI083019 and DTRA1-11-16-BRCWMD-BAA, all to RSK. BPD was supported by a National Science Foundation Graduate Research Fellowship (DGE1143954). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.