Abstract

Background:Cervical cancer ranks fourth in incidence and mortality among women. Ubiquitin-specific protein 53 binds to damage-specific DNA binding protein 2 and affects the biological properties of colon cancer. Damage-specific DNA binding protein is involved in nucleotide excision repair, which can repair DNA damage. However, the mechanism by which ubiquitin-specific protein 53 regulates the radiosensitivity of cervical cancer through damage-specific DNA binding protein remains unclear.Methods:Tissue samples from 40 patients with cervical squamous cell carcinoma who received radiotherapy were examined by immunohistochemistry to detect the expression of ubiquitin-specific protein 53, and clinical data were collected for statistical analysis. The cell cycle was detected by flow cytometry in Siha cells transfected with Si-USP53 and exposed to 8 Gy irradiation. Cell viability was determined by the CCK8 method in cells transfected with Si-USP53 and exposed to 0, 2, 4, 6, 8, or 10 Gy. The expression of damage-specific DNA binding protein, cyclin-dependent kinase 1, and cell cycle checkpoint kinase 2 was detected in cells transfected with Si-USP53.Results:The expression of ubiquitin-specific protein 53 in the tissues of patients with cervical squamous cell carcinoma was correlated with the sensitivity to radiotherapy. Knockdown of ubiquitin-specific protein 53 in Siha cells downregulated damage-specific DNA binding protein and caused G2/M cell cycle arrest and decreased the survival rate of cells in response to radiation.Conclusion:Ubiquitin-specific protein 53–induced cell cycle arrest and affected the radiotherapy sensitivity of tumors through damage-specific DNA binding protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call