Abstract

BackgroundHepatic fibrosis is a common pathological process in many chronic liver diseases. TXNDC5 has been shown to be involved in the progression of renal and pulmonary fibrosis. However, the role of TXNDC5 in hepatic fibrosis is unknown. The purpose of this study is to explore the role and mechanism of TXNDC5 in hepatic fibrosis. MethodsWe used TGF-β1 to activate LX-2 cells and reduced TXNDC5 expression by short hairpin RNA. Cell viability was assessed by CCK-8 assay. Cell apoptosis was analyzed by flow cytometry or Tunel assay. The fibrosis-related proteins and endoplasmic reticulum stress (ERs)-related proteins were measured by western blot. ELISA was performed to detect COL1AL levels and MMP2/9 activities in cell medium. A mouse model of hepatic fibrosis was constructed by intraperitoneal injection of CCL4. HE and Masson staining were performed to assess fibrosis in mouse liver tissue. ResultsThe results show that TXNDC5 was up-regulated in activated LX-2 cells and CCL4-induced hepatic fibrosis mice. Knockdown of TXNDC5 inhibited the viability of activated LX-2 cells and the production of collagen COL1A1. Knockdown of TXNDC5 promoted apoptosis of activated LX-2 cells. Mechanically, inhibition of TXNDC5 enhanced ERs, and the ERs inhibitor 4-Phenylbutyric acid (4-PBA) reversed the effect of TXNDC5 on activated LX-2 cells. More importantly, knockdown of TXNDC5 alleviated CCl4-induced hepatic fibrosis in mice. ConclusionsKnockdown of TXNDC5 may reduce hepatic fibrosis by regulating ERs, and targeting TXNDC5 seems to be a candidate treatment for hepatic fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call