Abstract

Renal fibrosis, the leading cause of end-stage renal disease and in which epithelial-mesenchymal transition (EMT) plays a central role, has a complex pathogenesis that is not fully understood. Therefore, we investigated the role of the long noncoding RNA LUCAT1 in the EMT of renal tubular epithelial cells under high-glucose (HG) conditions and the underlying mechanism involved. In this study, we established HG and normal glucose groups of HK-2 cells by treating HK-2 cells 30.0 or 5.5 mmol/L glucose, respectively. To investigate the roles of LUCAT1 and miR-199a-5p in HG-induced EMT, we transfected the HG group with negative control small interfering RNA (siRNA), siRNA targeting LUCAT1, negative control microRNA, or an miR-199a-5p mimic. The results of the quantitative reverse transcription PCR indicated that the LUCAT1 level in the HG group was increased, whereas the miR-199a-5p level was decreased. The EMT in the cells was induced by treatment with HG but was weakened by LUCAT1 knockdown or miR-199a-5p overexpression, which both also inhibited the HG-induced phosphorylation of SMAD3. Moreover, LUCAT1 and ZEB1 mRNA comprised the same microRNA response elements of miR-199a-5p. LUCAT1 knockdown had no effect on the miR-199a-5p level but decreased the HG-induced upregulation of ZEB1. In conclusion, HG conditions induced the upregulation of LUCAT1, and LUCAT1 knockdown inhibited the EMT in HG-treated HK-2 cells. LUCAT1 likely promotes HG-induced EMT through ZEB1 by sponging miR-199a-5p.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.