Abstract
Ischemia-reperfusion (IR) injury induces activation of several inflammasomes that widely affect neuroinflammation and, subsequently, neuronal viability. The absent in melanoma 2 (AIM2) inflammasome is highly expressed in neurons after traumatic injury. This study was performed to investigate whether the AIM2 molecule acts as an initiator to trigger AIM2 inflammasome activation and regulate neuronal pyroptosis in a mouse IR model. The early motor dysfunction that occurred within the first 8 h post-IR injury was closely associated with a massive increase in dsDNA in serum and cerebrospinal fluid (CSF) at the same observed timepoints. However, the subsequent persistent dysfunction was consistent with the continuously increasing protein levels of apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), cleaved caspase-1 and IL-1β with time. Upregulated AIM2 immunoreactivity was primarily visualized in neurons. The si-AIM2 treatment in vivo preserved part of motor function, accompanied by decreased protein levels of AIM2, ASC, cleaved caspase-1 and IL-1β. In vitro, the direct interactions between the AIM2 molecule and caspase-1 were demonstrated by immunofluorescence staining and coimmunoprecipitation. In this context, both si-AIM2 and Ac-YVAD-CMK treatments effectively maintained neuronal viability, as demonstrated by the decreased percentage of cells with pyroptosis and release of lactate dehydrogenase (LDH), accompanied by weak immunoreactivity and a decreased number of AIM2-caspase-1 positive neurons. By contrast, poly(dA-dT) treatment exacerbated neuronal pyroptosis by reversing the above-mentioned effects. However, no significant differences were observed after si-Con treatment. These results suggest AIM2 molecule played an important role in initiating AIM2 inflammasome activation through IR-induced release of ectopic dsDNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.