Abstract

Gastric cancer (GC) is one of the most common malignant tumors. The mechanism of GC radioresistance and new radiosensitizers must be revealed and developed to treat GC. Serine hydroxymethyltransferase 2 (SHMT2) is responsible for encoding the mitochondrial form of the pyridoxal phosphate-dependent enzyme. SHMT2 plays a critical role in several types of cancers, while its possible effect on the radiological resistance in GC is still unclear. In this study, we investigated the role of SHMT2 in the radiological resistance of GC. Our data confirmed that SHMT2 was highly expressed in radiation-resistant GC cells. SHMT2 reduced the radiosensitivity of GC cells. In addition, SHMT2 is involved in radiation-induced GC cell apoptosis. Further, SHMT2 regulated the Wnt/β-catenin pathway, therefore reducing the radiosensitivity of GC cells in vivo. In conclusion, we revealed that depletion of SHMT2 enhanced the sensitivity of GC cells to interventional radiotherapy through the Wnt/β-catenin pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.