Abstract

Human ribonuclease inhibitor (RI) is a cytoplasmic acidic protein. RI is constructed almost entirely of leucine-rich repeats, which might be involved in some unknown biological functions like other structurally similar proteins besides inhibiting RNase A and angiogenin activities. Our previous experiments demonstrated that up-regulating RI might effectively inhibit some tumor growth and metastasis. However, the down-regulating RI influence on the tumor does not have any report until now, the mechanisms underlying antitumor of RI have not been fully understood. In this study, the efficient RNA interferences of RI were constructed using a plasmid vector and identified with RT-PCR, Western blot and Immunocytochemistry, then were transfected into non-invasive bladder cancer BIU-87 cells. We demonstrated that knockdown RI expression in BIU-87 cells could obviously change the cell morphology, rearrange the microfilaments and extend the lamellipodia, as well as enhance proliferation, increase migration, invasion and matrix metalloprotease level, and also reduce adhesion in vitro. BALB/C nude mice that were injected with the BIU-87 cells transfected RI siRNA showed a significant facilitation of the tumor with heavier tumor weight, higher density of microvessels, lower nm23-H1 and E-Cadherin expressions than those in the control group. Taken together, these experiments suggest that knockdown of RI could promote growth and metastasis potentials of BIU-87 cells. Our present findings reveal the novel mechanism that anti-tumor effect of RI is also involved in suppressing growth and metastasis, besides antiangiogenesis. The results show that RI may be a therapeutic target protein for bladder cancer and may be of biological importance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.