Abstract
Neuronal energy metabolism dysregulation is involved in various pathologies of Ischemia-reperfusion (I/R), yet the role of RGMA in neuronal metabolic reprogramming has not been reported. In this study, we found that RGMA expression significantly increased after I/R, and compared to control mice, mice with MCAO/R showed an increase in glycolytic metabolic products and the expression of glycolytic pathway proteins. Furthermore, RGMA levels are closely related to neuronal energy metabolism. We discovered that knockdown of RGMA can shift neuronal energy metabolism towards oxidative phosphorylation and the pentose phosphate pathway, thereby protecting mice from ischemic reperfusion injury. Mechanistically, knockdown of RGMA can downregulate PGK1 expression, reducing the increase in glycolytic flux following ischemia reperfusion. Moreover, we found that knockdown of RGMA can reduce the interaction between USP10 and PGK1, thus affecting the ubiquitination degradation of PGK1. In summary, our data suggest that RGMA may regulate neuronal energy metabolism by inhibiting the USP10-mediated deubiquitination of PGK1, thus protecting it from I/R injury. This study provides new ideas for clarifying the intrinsic mechanism of neuronal damage after I/R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.