Abstract

BackgroundGemcitabine is used as a standard drug treatment for non-small cell lung cancer (NSCLC), but treatment responses vary among patients. Our previous studies demonstrated that POLA2 + 1747 GG/GA single nucleotide polymorphism (SNP) improves differential survivability and mortality in NSCLC patients. Here, we determined the association between POLA2 and gemcitabine treatment in human lung cancer cells.ResultsHuman PC9, H1299 and H1650 lung cancer cell lines were treated with 0.01-100 μM gemcitabine for 72 h. Although all 3 cell lines showed decreased cell viability upon gemcitabine treatment, H1299 was found to be the most sensitive to gemcitabine treatment. Next, sequencing was performed to determine if POLA2 + 1747 SNP might be involved in gemcitabine sensitivity. Data revealed that all 3 cell lines harbored the wild-type POLA2 + 1747 GG SNP, indicating that the POLA2 + 1747 SNP might not be responsible for gemcitabine sensitivity in the cell lines studied. Silencing of POLA2 gene in H1299 was then carried out by siRNA transfection, followed by gemcitabine treatment to determine the effect of POLA2 knockdown on chemosensitivity to gemcitabine. Results showed that H1299 exhibited increased resistance to gemcitabine after POLA2 knockdown, suggesting that POLA2 does not act alone and may cooperate with other interacting partners to cause gemcitabine resistance.ConclusionsCollectively, our findings showed that knockdown of POLA2 increases gemcitabine resistance in human lung cancer cells. We propose that POLA2 may play a role in gemcitabine sensitivity and can be used as a prognostic biomarker of patient outcome in NSCLC pathogenesis.

Highlights

  • Gemcitabine is used as a standard drug treatment for non-small cell lung cancer (NSCLC), but treatment responses vary among patients

  • We have previously demonstrated that polymerase α2 accessory subunit (POLA2) + 1747 GG/GA improves differential survivability and mortality in NSCLC patients, and proposed that this novel single nucleotide polymorphism (SNP) may be used as a prognostic biomarker of patient outcome in NSCLC pathogenesis [12]

  • Taken together, our findings suggested that POLA2 may play a role in gemcitabine resistance

Read more

Summary

Introduction

Gemcitabine is used as a standard drug treatment for non-small cell lung cancer (NSCLC), but treatment responses vary among patients. Our previous studies demonstrated that POLA2 + 1747 GG/GA single nucleotide polymorphism (SNP) improves differential survivability and mortality in NSCLC patients. We determined the association between POLA2 and gemcitabine treatment in human lung cancer cells. Results: Human PC9, H1299 and H1650 lung cancer cell lines were treated with 0.01-100 μM gemcitabine for 72 h. Conclusions: Collectively, our findings showed that knockdown of POLA2 increases gemcitabine resistance in human lung cancer cells. Studies have shown that the responses of NSCLC patients to gemcitabine treatment vary, which could be due to genetic polymorphisms and different gene variants involved in the gemcitabine pathway [5, 6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call