Abstract

Peroxisomes are organelles that are ubiquitously found in all eukaryotic cells. Enzymes within their lumen are responsible for a variety of processes including the metabolism of fatty acids and eradication (neutralization) of free radicals. Peroxisomes are dynamic organelles, able to alter their numbers in response to a variety of different metabolic and cell-specific cues. Changes in peroxisome numbers can occur through division of preexisting peroxisomes or through de novo biogenesis from the ER. Proteins such as the Pex11 family of peroxins have been implicated as regulatory factors involved in peroxisome division. Division of peroxisomes involves elongation and membrane constriction followed by fission, which requires Pex11β. The regulation of peroxisome numbers in different cell types and tissues is variable and poorly understood. Here, we examine how knockdown of Pex11β affects peroxisomal genes, proteins, and peroxisome numbers in A6 kidney epithelial cells derived from Xenopus laevis. Pex11β morpholino use subsequently decreased mRNA levels of Pex1, PMP70, and PPARγ. Moreover, the Pex11β morpholino decreased PMP70 protein levels and PMP70-positive structures. Furthermore, the marker GFP-SKL revealed fewer peroxisome-like structures. These decreases resulted in increased levels of H2O2 and cellular and mitochondrial reactive oxygen species as measured by Amplex Red, DCFDA, and MitoTracker assays, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.