Abstract

BackgroundNADPH-cytochrome P450 reductase (CPR) plays important roles in cytochrome P450-mediated metabolism of endogenous and exogenous compounds, and participates in cytochrome P450-related detoxification of insecticides. However, the CPR from Locusta migratoria has not been well characterized and its function is still undescribed. ResultsThe full-length of CPR gene from Locusta migratoria (LmCPR) was cloned by RT-PCR based on transcriptome information. The membrane anchor region, and 3 conserved domains (FMN binding domain, connecting domain, FAD/NADPH binding domain) were analyzed by bioinformatics analysis. Phylogenetic analysis showed that LmCPR was grouped in the Orthoptera branch and was more closely related to the CPRs from hemimetabolous insects. The LmCPR gene was ubiquitously expressed at all developmental stages and was the most abundant in the fourth-instar nymphs and the lowest in the egg stage. Tissue-specific expression analysis showed that LmCPR was higher expressed in ovary, hindgut, and integument. The CPR activity was relatively higher in Malpighian tubules and integument. Silencing of LmCPR obviously reduced the enzymatic activity of LmCPR, and enhanced the susceptibility of Locusta migratoria to carbaryl. ConclusionThese results suggest that LmCPR contributes to the susceptibility of L. migratoria to carbaryl and could be considered as a novel target for pest control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.