Abstract
Deregulated glucose and lipid metabolism are the primary underlying manifestations associated with diabetes mellitus (DM) and non-alcoholic fatty liver disease (NAFLD). This study aims to investigate the role of Gm10804, a novel long non-coding RNA (lncRNA), in regulating hepatic glucose and lipid metabolism in DM complicated with NAFLD (DM-NAFLD). Mouse primary hepatocytes exposed to high glucose (HG) were used as a cell model. A mouse DM-NAFLD model was established by high-energy feeding combined with intraperitoneal injection of streptozotocin. The results showed that Gm10804 expression was upregulated in HG-treated hepatocytes and livers from DM-NAFLD mice. Results in hepatocytes in vitro demonstrated that Gm10804 overexpression aggravated, whereas Gm10804 silencing abrogated HG-induced increase in intracellular triglyceride (TG) content, lipid accumulation and expression of hepatic lipogenic proteins (sterol regulatory element-binding proteins 1-c [SREBP-1c] and fatty acid synthase [FAS]) and enzymes for gluconeogenesis (phosphoenolpyruvate carboxykinase [PEPCK] and glucose-6-phosphatase [G6Pase]). Further in vivo assays showed that lentivirus-mediated hepatic knockdown of Gm10804 alleviated hepatic steatosis and lipid accumulation, and decreased expression of hepatic PEPCK, G6Pase, SREBP-1c and FAS in DM-NAFLD mice. In summary, Gm10804 knockdown attenuates hepatic lipid accumulation by ameliorating disorders of hepatic glucose and lipid metabolism in DM-NAFLD. SIGNIFICANCE OF THE STUDY: We first discovered that Gm10804 knockdown attenuated hepatic lipid accumulation by ameliorating disorders of hepatic glucose and lipid metabolism in DM-NAFLD. These results help to understand the pathogenesis and development of DM-NAFLD and provide some clues for further understanding the regulation of lncRNAs in glucose and lipid metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.