Abstract

BackgroundAbdominal aortic aneurysm (AAA), an irreversible cardiovascular disease prevalent in the artery, causes the increase of the aneurysm diameter over time, and is a fatal phenomenon inducing sidewall rupture. Long noncoding RNAs (lncRNAs) serve as promising biomarkers for AAA. In the present study, we sought to define the role of lncRNA growth-arrest-specific transcript 5 (GAS5) in growth of smooth muscle cells (SMC) and progression of AAA.MethodsInitially, we established angiotensin II (Ang II)-induced AAA mouse models and Ang II-treated vascular SMC model. RT-qPCR and Western blot analysis were adopted to determine expression of GAS5 and zeste homolog 2 (EZH2). After ectopic expression and depletion experiments in Ang II-treated mice and vascular SMCs, cell apoptosis was detected in SMCs using flow cytometry and in mice using TUNEL staining. The binding of GAS5 and EZH2 was evaluated using RNA binding protein immunoprecipitation (RIP) and Co-IP assays.ResultsIncreased GAS5 and RIG-I but decreased EZH2 were found in aortic tissues of AAA mice. EZH2 overexpression inhibited AAA formation and suppressed SMC apoptosis. Functionally, EZH2 blocked the RIG-I signaling pathway and consequently inhibited SMC apoptosis. GAS5 regulated EZH2 transcription in a negative manner in SMCs. Knockdown of GAS5 attenuated SMC apoptosis, which was reversed by EZH2 inhibition or RIG-I overexpression.ConclusionsThe current study demonstrated that GAS5 induced SMC apoptosis and subsequent AAA onset by activating EZH2-mediated RIG-I signaling pathway, highlighting GAS5 as a novel biomarker for AAA.

Highlights

  • Abdominal aortic aneurysm (AAA), an irreversible cardiovascular disease prevalent in the artery, causes the increase of the aneurysm diameter over time, and is a fatal phenomenon inducing sidewall rupture

  • RT-qPCR and Western blot analysis depicted that expression of growth-arrest-specific transcript 5 (GAS5) and zeste homolog 2 (EZH2) expression was decreased in aortic tissues of AAA mice when compared with the control mice (p < 0.05) (Fig. 1C, D)

  • We found that AAA mice overexpressing EZH2 exhibited lower AAA formation rate than AAA mice, and the maximum abdominal aortic diameter was reduced in oeEZH2-treated AAA mice (p < 0.05) (Fig. 1H)

Read more

Summary

Introduction

Abdominal aortic aneurysm (AAA), an irreversible cardiovascular disease prevalent in the artery, causes the increase of the aneurysm diameter over time, and is a fatal phenomenon inducing sidewall rupture. We sought to define the role of lncRNA growth-arrest-specific transcript 5 (GAS5) in growth of smooth muscle cells (SMC) and progression of AAA. Abdominal aortic aneurysm (AAA) is a prevalent irreversible cardiovascular disease occurring in the artery and the increase of the aneurysm diameter over time is a fatal phenomenon inducing sidewall rupture [1]. Long ncRNAs (lncRNAs) are a kind of ncRNAs, and have attracted increasing research attention especially with regard to their regulatory action on proliferation, migration and apoptosis of vascular smooth muscle cells (SMCs) in AAA [10]. Dysfunction of vascular SMCs and other pathological cellular processes, such as inflammatory and immune responses, and vascular extracellular matrix remodeling, can contribute to AAA formation, and has been shown to be associated with LncRNAs, such growth-arrest-specific transcript 5 (GAS5), H19, Lnc-HLTF-5, HIF1α-as1 [8, 11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call