Abstract

Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. The purpose of this study was to investigate the potential functional role of long non-coding RNA TUG1 in high glucose (HG)-stimulated human retinal microvascular endothelial cells (hRMECs). The results demonstrated that following 72h of HG stimulation, enhanced proliferation, migration, and tube formation process were observed in hRMECs. Moreover, HG treatment markedly increased TUG1 expression in hRMECs, and knockdown of TUG1 notably restrained the aberrant phenotypes of hRMECs induced by HG. Mechanistically, TUG1 may serve as a competing endogenous RNA (ceRNA) for miR-145, thereby blocking the repression on VEGF-A in hRMECs. Rescue experiments further indicated that inhibition of miR-145 abolished the beneficial role of TUG1 knockdown in HG-treated hRMECs. Our data suggested that knockdown of TUG1 protects hRMECs against HG stimulation partly by regulating miR-145/VEGF-A axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call