Abstract

Long non-coding ribose nucleic acids (lncRNAs) have been implicated in the development of nephrolithiasis. The study aims to investigate the interplay of lncRNA SBF2-AS1 (SETbinding factor 2 antisense RNA 1) and NLR family pyrin domain containing 3 (NLRP3) in regulating the calcium oxalate monohydrate (COM)-induced human kidney HK-2 cell injury. HK-2 cells were treated with COM (100µg/mL) to create a cellular model of kidney injury. Gene and protein expression was assessed by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot. Proliferation and apoptosis rates, as well as levels of malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were measured. Additionally, potential miRNAs interacting with SBF2-AS1 and NLRP3 were predicted utilizing the starBase and TargetScan databases. The interference of SBF2-AS1 resulted in increased cell proliferation and SOD levels in HK-2 cells after COM induction. SBF2-AS1 silencing also reduced COM-induced cell death and inflammatory cytokine production by down-regulating NLRP3 protein expression. Conversely, forced upregulation of NLRP3 abrogated the effect of SBF2-AS1 interference. Notably, SBF2-AS1 interference on COM-induced oxidative stress and COM-induced cellular damage was rescued by antioxidant, indicating the involvement of oxidative burden in COM-induced damage. miR-302e acted as a mediator miRNA linking the functional association of SBF2-AS1 and NLRP3. Silencing SBF2-AS1 promoted miR-302e level and miR-302e reduced NLRP3 expression in HK-2 cells to protect against COM-induced damage. In summary, these findings suggest that downregulation of lncRNA SBF2-AS1 can potentially protect HK-2 cells from COM-induced injury by modulating the miR-302e/NLRP3 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.