Abstract

LINC00511 has been reported as a biomarker related to the prognosis of non-small cell lung cancer (NSCLC), but the molecular mechanism and exact functions of LINC00511 in chemoresistance of NSCLC remain to be elucidated. RT-qPCR was used to evaluate the mRNA expression of LINC00511, miR-625, and leucine rich repeat containing 8 volume-regulated anion channel subunit E (LRRC8E). Western blotting detected the protein levels of Ki-67, MMP-9, cleaved-caspase-3. The interaction between miR-625 and LINC00511 or LRRC8E was verified by luciferase reporter assays. CCK-8, TUNEL, and Transwell assays were used to evaluate IC50 value, proliferation, migration, and invasion of NSCLC cells. In our study, it was discovered that the levels of LINC00511 and LRRC8E were increased, while miR-625 expression was decreased in NSCLC tissues, DDP-resistant NSCLC cells, and non-resistant NSCLC cells. LINC00511 depletion significantly curbed cell growth, IC50 value, and metastasis in DDP-resistant NSCLC cells. In addition, the influence of LINC00511 deficiency on the DDP resistance in NSCLC was overturned by suppressing miR-625. Furthermore, LRRC8E overexpression abolished the promotive effect of miR-625 abundance on the DDP sensitivity in DDP-resistant NSCLC cells. Our results demonstrated that LINC00511 increased DDP resistance in NSCLC by suppressing miR-625 to upregulate LRRC8E.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.