Abstract

The important role of insulin-like growth factor-1 receptor (IGF-1R) in tumorigenesis has been well established. The classical model involves IGF-1R binding to IGF-1/2, the following activation of PI3K-Akt-signaling cascades, driving cell proliferation and apoptosis inhibition. Here we report a new signal transduction pathway of IGF-1R in the intestinal epithelium. Using heterozygous knockout mice (Igf1r+/−), we analyzed the expressions of viral RNA sensors MDA5 and RIG-I in the intestinal epithelium. Igf1r+/− mice exhibited higher MDA5 and RIG-I than wild-type (WT) mice, indicating that knockdown of IGF-1R could trigger MDA5 and RIG-I. IGF-1R knockdown-triggered MDA5 and RIG-I were further investigated in human colonic cancer cells. Increased MDA5 and RIG-I were clearly seen in the cytoplasm in cancer cells as well as normal human colonic cells with silenced IGF-1R. Notably, the upregulations of MDA5 and RIG-I was not affected by blockage of the PI3K-Akt pathway with LY294002. These results suggested a new signal transduction pathway of IGF-1R. Importantly, IGF-1R knockdown-triggered MDA5 and RIG-I resulted in colorectal cancer apoptosis through activation of the mitochondrial pathway. These in vitro observations were evidenced in the azoxymethane (AOM)-dextran sulfate sodium (DSS) colorectal cancer model of mice. In conclusion, knockdown of IGF-1R triggers viral RNA sensor MDA5- and RIG-I-mediated mitochondrial apoptosis in cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.