Abstract

Myocardial infarction (MI) is a common cardiovascular disease characterized by an interruption of blood and oxygen supply to the heart, which results in gradual damage to the myocardial tissue and ultimately heart failure. The role of long non-coding RNAs in the pathology of MI remains in its infancy, but has been implicated in MI and other heart conditions. For example, the expression of a non-coding RNA hypoxia-inducible factor 1α (HIF1A)-antisense RNA 2 (HIF1A-AS2) has previously been linked to coronary heart disease, however, whether HIF1A-AS2 expression is also high in MI has not been addressed. Here, we report that HIF1A-AS2 is upregulated in hypoxia-treated human cardiomyocytes (HMCs) compared with normal cardiomyocytes, and that silenced HIF1A-AS2 inhibited apoptosis and facilitated viability, migration, and invasion of HMCs. Our data suggested that in MI, HIF1A-AS2 upregulation was associated with miR-623, which promoted expression of tripartite motif containing 44 (TRIM44). Moreover, by upregulating TRIM44 we were able to remedy the HIF1A-AS2 repression of apoptosis in HMCs. Thus, we conclude that cardiomyocytes can be protected against hypoxic-treated injury by knockdown of HIF1A-AS2, which suppresses TRIM44, and that HIF1A-AS2 overexpression is a prognostic indicator of MI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call