Abstract

Cleavage of Amyloid precursor protein (APP) by the β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting step in the production of amyloid-β (Aβ) synaptotoxins. The siRNA-mediated silencing to attenuate the expression of BACE1 to ameliorate cognitive dysfunction in mice had been investigated. To improve therapeutic gene delivery to the central nervous system, cationic copolymer poly(ethylene glycol)-b-poly[N-(N′-{N′′-[N′′′-(2-aminoethyl)-2-aminoethyl]-2-aminoethyl}-2-aminoethyl)aspartamide]-cholesterol was synthesized, then RVG29 and Tet1 peptides were exploited as ligands to construct a dual-targeting brain gene delivery polyion complex (Tet1/RVG29-PIC). The cell uptake of a coculture cell model showed that the Tet1/RVG29-PIC exhibited notable transport characteristics and possessed affinity towards nerve cells. In vivo transfection, Tet1/RVG29-PIC possessed the highest expression of luciferase in brain compared with that of RVG29-PIC or Tet1-PIC, which were 1.25 and 1.22 times respectively. Silence BACE1 expression using siRNA-expressing plasmid loaded Tet1/RVG29-PIC that improved behavioral deficits in the APP/PS1 mouse model, demonstrating the favorable brain delivery properties of Tet1/RVG29-PIC by synergistical engagement of GT1B and nicotinic acetylcholine receptors. Our results suggested that the nanoformulation has the potential to be exploited as a multistage-targeting gene vector for the CNS disease therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call